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1 Introduction Definitions and Nota-
tions.

We denote by C the set of all finite complex numbers.
Let f be a meromorphic function defined on C. We
use the standard notations and definitions in the theory
of entire and meromorphic functions which are avail-
able in [5] and [17]. In the sequel we use the following
notation :

log[k] x = log
(
log[k−1] x

)
∀k = 1, 2, 3, · · ·

and log[0] x = x.

Let L ≡ L(r) be a positive continuous function
increasing slowly i.e., L(ar) ∼ L(r) as r → ∞ for
every positive constant a. Singh and Barker[13] de-
fined it in the following way:

Definition 1 [13] A positive continuous function
L(r) is called a slowly changing function if for ε > 0,

1

kε
≤ L(kr)

L(r)
≤ kε, for r ≥ r(ε)

and uniformly for k ≥ 1.

If further, L(r) is differentiable, the above condi-
tion is equivalent to

lim
r→∞

rL′(r)

L(r)
= 0 .

Somasundaram and Thamizharasi [14] intro-
duced the notions of L-order and L-order for entire
functions. The more generalized concept for L-order
and L-type for entire and meromorphic functions are
L∗-order and L∗-type respectively. Their definitions
are as follows:

Definition 2 [14] The L∗-order ρL
∗

f and the L∗ -
lower orderλL

∗
f of an entire function f are defined as

ρL
∗

f = lim sup
r→∞

log[2]M(r, f)

log[reL(r)]

and

λL
∗

f = lim inf
r→∞

log[2]M(r, f)

log
[
reL(r)

] ,
When f is meromorphic, one can easily verify that

ρL
∗

f = lim sup
r→∞

log T (r, f)

log
[
reL(r)

]
and

λL
∗

f = lim inf
r→∞

log T (r, f)

log
[
reL(r)

] .
Definition 3 [14] The L∗-type σL

∗
f of an entire func-

tion f is defined as follows:

σL
∗

f = lim sup
r→∞

logM(r, f)[
reL(r)

]ρL∗
f

, 0 < ρL
∗

f <∞ .
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For meromorphic f ,

σL
∗

f = lim sup
r→∞

T (r, f)[
reL(r)

]ρL∗
f

, 0 < ρL
∗

f <∞ .

Let f be a non-constant meromorphic function
defined in the open complex plane C. Also let
n0j,n1j,...nkj(k ≥ 1) be non-negative integers such

that for each j,
k∑

i=0
nij ≥ 1. We call

Mj [f ] = Aj (f)
n0j

(
f (1)

)n1j

...
(
f (k)

)nkj

where T (r,Aj) = S(r, f) to be a differential mono-

mial generated by f. The numbers γMj =
k∑

i=0
nij and

ΓMj =
k∑

i=0
(i + 1)nij are called respectively the de-

gree and weight of Mj [f ] ([4],[12]). The expression

P [f ] =
s∑

i=0
Mj [f ] is called a differential polynomial

generated by f . The numbers γP = max
1≤j≤s

γMj and

ΓP = max
1≤j≤s

ΓMj are called respectively the degree

and weight of P [f ]([4],[12]). Also we call the num-
bers γP

−
= min

1≤j≤s
γMj and k (the order of the highest

derivative of f ) the lower degree and the order of P [f ]
respectively. If γp

−
= γP , P [f ] is called a homoge-

neous differential polynomial. Throughout the paper
we consider only the non-constant differential poly-
nomials and we denote by P0[f ] a differential poly-
nomial not containing f i.e., for which n0j = 0 for
j = 1, 2, ...s. We consider only those P [f ], P0[f ]
singularities of whose individual terms do not can-
cel each other. We also denote by M [f ] a differen-
tial monomial generated by a transcendental mero-
morphic function f.

In the sequel the following definitions are also
well known :

Definition 4 Let ‘a’ be a complex number, finite or
infinite. The Nevanlinna deficiency and the Valiron
deficiency of ‘a’ with respect to a meromorphic func-
tion f are defined as

δ(a; f) = 1−lim sup
r→∞

N(r, a; f)

T (r, f)
= lim inf

r→∞

m(r, a; f)

T (r, f)

and

∆(a; f) = 1−lim inf
r→∞

N(r, a; f)

T (r, f)
= lim sup

r→∞

m(r, a; f)

T (r, f)
.

Definition 5 The quantity Θ(a; f) of a meromorphic
function f is defined as follows

Θ(a; f) = 1− lim sup
r→∞

−
N(r, a; f)

T (r, f)
.

Definition 6 [16] For a ∈ C ∪ {∞}, we denote by
n(r, a; f |= 1), the number of simple zeros of f −
a in |z| ≤ r. N(r, a; f |= 1) is defined in terms of
n(r, a; f |= 1) in the usual way. We put

δ1(a; f) = 1− lim sup
r→∞

N(r, a; f |= 1)

T (r, f)
,

the deficiency of ‘a’ corresponding to the simple a-
points of f i.e., simple zeros of f − a.

Yang [15] proved that there exists at most a denu-
merable number of complex numbers a ∈ C ∪ {∞}
for which δ1(a; f) > 0 and

∑
a∈C∪{∞}

δ1(a; f) ≤ 4.

Definition 7 [9] For a ∈ C ∪ {∞} , let np(r, a; f)
denotes the number of zeros of f −a in |z| ≤ r, where
a zero of multiplicity < p is counted according to its
multiplicity and a zero of multiplicity ≥ p is counted
exactly p times; and Np(r, a; f) is defined in terms of
np(r, a; f) in the usual way. We define

δp(a; f) = 1− lim sup
r→∞

Np(r, a; f)

T (r, f)
.

Definition 8 [3] P [f ] is said to be admissible if
(i) P [f ] is homogeneous, or
(ii) P [f ] is non homogeneous and m(r, f) =

S(r, f).

Lakshminarasimhan [6] introduced the idea of the
functions of L-bounded index. Later Lahiri and Bhat-
tacharjee [8] worked on the entire functions of L-
bounded index and of non uniform L-bounded index.
In the paper we investigate the comparative growth of
composite entire and meromorphic functions and dif-
ferential monomials, differential polynomials gener-
ated by one of their factors using L∗-order and L∗-
type.

2 Lemmas.
In this section we present some lemmas which will be
needed in the sequel.
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Lemma 9 [1] If f be meromorphic and g be entire
then for all sufficiently large values of r,

T (r, f ◦ g) ≤ {1 + o (1)} T (r, g)

logM (r, g)
T (M (r, g) , f) .

Lemma 10 [11] Let f and g be any two entire func-
tions. Then for all r > 0,

T (r, f ◦ g) ≥ 1

3
logM

{
1

8
M
(r
4
, g
)
+ o (1) , f

}
.

Lemma 11 [7] Let g be an entire function with λg <
∞ and ai(i = 1, 2, 3, · · · , n; n ≤ ∞) are en-
tire functions satisfying T (r, ai) = o {T (r, g)}. If
n∑

i=1
δ (ai, g) = 1 then lim

r→∞
T (r,g)

logM(r,g) =
1
π .

Lemma 12 [3] Let P0[f ] be admissible.If f is
of finite order or of non zero lower order and∑
a ̸=∞

Θ(a; f) = 2 then

lim
r→∞

T (r, P0[f ])

T (r, f)
= ΓP0[f ].

Lemma 13 [3] Let f be either of finite order
or of non-zero lower order such that Θ(∞; f) =∑
a ̸=∞

δp (a; f) = 1 or δ (∞; f) =
∑

a ̸=∞
δ (a; f) = 1.

Then for homogeneous P0[f ] ,

lim
r→∞

T (r, P0[f ])

T (r, f)
= γP0[f ].

Lemma 14 Let f be a meromorphic function of finite
order or of non zero lower order. If

∑
a̸=∞

Θ(a; f) =

2, then the L∗-order ( L∗-lower order) of admissible
P0[f ] is same as that of f . Also the L∗-type of P0[f ]
is ΓP0[f ] times that of f when f is of finite positive
L∗-order.

Proof. By Lemma 12, lim
r→∞

log T (r,P0[f ])
log T (r,f) exists and is

equal to 1.

ρL
∗

P0[f ]
= lim sup

r→∞

log T (r, P0[f ])

log
[
reL(r)

]
= lim sup

r→∞

log T (r, f)

log
[
reL(r)

] . lim
r→∞

log T (r, P0[f ])

log T (r, f)

= ρL
∗

f .1

= ρL
∗

f .

In a similar manner, λL
∗

P0[f ]
= λL

∗
f .

Again by Lemma 12,

σL
∗

P0[f ]
= lim sup

r→∞

T (r, P0[f ])[
reL(r)

]ρL∗
P0[f ]

= lim
r→∞

T (r, P0[f ])

T (r, f)
. lim sup

r→∞

T (r, f)[
reL(r)

]ρL∗
f

= ΓP0[f ].σ
L∗
f .

This proves the lemma. ⊓⊔

Lemma 15 Let f be a meromorphic function of finite
order or of non zero lower order such that Θ(∞; f) =∑
a ̸=∞

δp (a; f) = 1 or δ (∞; f) =
∑

a ̸=∞
δ (a; f) = 1.

Then the L∗-order ( L∗-lower order) of homogeneous
P0 [f ] and f are same. Also the L∗-type of P0 [f ] is
γP0[f ] times that of f when f is of finite positive L∗-
order.

We omit the proof of the lemma because it can be
carried out in the line of Lemma 14 and with the help
of Lemma 13.

Lemma 16 [10] Let f be a transcendental meromor-
phic function of finite order or of non-zero lower order
and

∑
a∈C∪{∞}

δ1(a; f) = 4. Then

lim
r→∞

T (r,M [f ])

T (r, f)
= ΓM − (ΓM − γM )Θ(∞; f) ,

where

Θ(∞; f) = 1− lim sup
r→∞

−
N(r, f)

T (r, f)
.

Lemma 17 If f be a transcendental meromorphic
function of finite order or of non-zero lower order and∑
a∈C∪{∞}

δ1(a; f) = 4, then L∗-order ( L∗-lower or-

der) of M [f ] are same as those of f . Also the L∗-type
of M [f ] is ΓM − (ΓM − γM )Θ(∞; f) times that of f
when f is of finite positive L∗-order.

We omit the proof of the lemma because it can be
carried out in the line of Lemma 14 and with the help
of Lemma 16.

3 Theorems.
In this section we present the main results of the paper.

It is needless to mention that in the paper, the ad-
missibility and homogenity of P0[f ] will be needed as
per the requirements of the theorems.
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Theorem 18 Let f be a meromorphic function and
g be an entire function of finite order or of non zero
lower order such that (i) 0 < ρL

∗
f < ∞, (ii) σL

∗
g <

∞, (iii) 0 < σL
∗

f < ∞ and (iv) Θ (∞; g) =∑
a ̸=∞

δp (a; g) = 1 or δ (∞; g) =
∑

a ̸=∞
δ (a; g) = 1.

Then
(a) if L (M (r, g)) = o {T (r, P0 [g])} then

lim inf
r→∞

log T (r, f ◦ g)
T (r, P0 [g]) + L (M (r, g))

≤
ρL

∗
f

γP0[g]
,

and (b) if T (r, P0 [g]) = o {L (M (r, g))} then

lim inf
r→∞

log T (r, f ◦ g)
T (r, P0 [g]) + L (M (r, g))

≤ ρL
∗

f .

Proof. Since T (r, g) ≤ log+M (r, g) in view of
Lemma 9 we obtain for all sufficiently large values of
r that

T (r, f ◦ g) ≤ {1 + o (1)}T (M (r, g) , f)

i.e.,

log T (r, f ◦ g) ≤ log {1 + o (1)}
+ log T (M (r, g) , f)

i.e.,

log T (r, f ◦ g) ≤ o (1) +(
ρL

∗
f + ε

)
{logM (r, g) + L (M (r, g))} . (1)

Using the definition of L∗-type we obtain from (1) for
all sufficiently large values of r that

log T (r, f ◦ g) ≤ o (1)+(
ρL

∗
f + ε

)(
σL

∗
g + ε

){
reL(r)

}ρL
∗

g

+
(
ρL

∗
f + ε

)
L (M (r, g)) . (2)

Again from the definition of L∗-type and in view of
Lemma 13 and Lemma 15 we get for a sequence of
values of r tending to infinity that

T (r, P0 [g]) ≥
(
σL

∗

P0[g]
− ε
){

reL(r)
}ρL

∗
P0[g]

i.e., T (r, P0 [g]) ≥
{
γP0[g].σ

L∗
g − ε

}{
reL(r)

}ρL
∗

g

i.e.,
{
reL(r)

}ρL
∗

g ≤ T (r, P0 [g])(
γP0[g].σ

L∗
g − ε

) . (3)

Now from (2) and (3) it follows for a sequence of
values of r tending to infinity that

log T (r, f ◦ g)

≤ o (1) +
(
ρL

∗
f + ε

)(
σL

∗
g + ε

) T (r, P0 [g])(
γP0[g].σ

L∗
g − ε

)
+
(
ρL

∗
f + ε

)
L (M (r, g))

i.e.,

log T (r, f ◦ g)
T (r, P0 [g]) + L (M (r, g))

≤

o (1)

T (r, P0 [g]) + L (M (r, g))
+

(
ρL

∗
f +ε

)(
σL∗
g +ε

)
(γP0[g]

.σL∗
g −ε)

1 + L(M(r,g))
T (r,P0[g])

+

(
ρL

∗
f + ε

)
1 + T (r,P0[g])

L(M(r,g))

. (4)

If L (M (r, g)) = o {T (r, P0 [g])} then from (4) we
obtain that

lim inf
r→∞

log T (r, f ◦ g)
T (r, P0 [g]) + L (M (r, g))

≤(
ρL

∗
f + ε

) (
σL

∗
g + ε

)
γP0[g].

(
σL∗
g − ε

) .

Since ε (> 0) is arbitrary, it follows from above that

lim inf
r→∞

log T (r, f ◦ g)
T (r, P0 [g]) + L (M (r, g))

≤
ρL

∗
f

γP0[g]
.

Thus the first part of Theorem 18 follows.
Again if T (r, P0 [g]) = o {L (M (r, g))} then

from (4) it follows that

lim inf
r→∞

log T (r, f ◦ g)
T (r, P0 [g]) + L (M (r, g))

≤
(
ρL

∗
f + ε

)
.

As ε (> 0) is arbitrary, we obtain from above that

lim inf
r→∞

log T (r, f ◦ g)
T (r, P0 [g]) + L (M (r, g))

≤ ρL
∗

f .

Thus the second part of Theorem 18 follows. ⊓⊔

Remark 19 With the help of Lemma 15, the conclu-
sion of Theorem 18 can also be drawn under the hy-
pothesis

Θ(∞; g) =
∑
a ̸=∞

δp (a; g) = 1
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or
δ (∞; g) =

∑
a ̸=∞

δ (a; g) = 1

instead of
∑

a ̸=∞
Θ(a; g) = 2.

In the line of Theorem 18 and with the help of
Lemma 17 we may state the following theorem with-
out proof :

Theorem 20 Let f be a meromorphic function and g
be a transcendental entire function of finite order or
of non zero lower order such that

(i) 0 < ρL
∗

f <∞,

(ii) σL
∗

g <∞,

(iii) 0 < σL
∗

f <∞ and
(iv)

∑
a∈C∪{∞}

δ1(a; g) = 4.

Thus
(a) if L (M (r, g)) = o {T (r,M [g])} then

lim inf
r→∞

log T (r, f ◦ g)
T (r,M [g]) + L (M (r, g))

≤
ρL

∗
f

ΓM − (ΓM − γM )Θ(∞; g)
,

and
(b) if T (r,M [g]) = o {L (M (r, g))} then

lim inf
r→∞

log T (r, f ◦ g)
T (r,M [g]) + L (M (r, g))

≤ ρL
∗

f .

Theorem 21 Let f be meromorphic with finite order
or non zero lower order and g be entire with

(i) 0 < ρL
∗

f <∞,

(ii) ρL
∗

f = ρL
∗

g ,

(iii) σL
∗

g <∞,

(iv) 0 < σL
∗

f <∞ and
(v)

∑
a ̸=∞

Θ(a; f) = 2.

Then
(a) if L (M (r, g)) = o

{
rαeαL(r)

}
as r → ∞

and for some positive α < ρL
∗

f then

lim inf
r→∞

log T (r, f ◦ g)
T (r, P0[f ]) + L (M (r, g))

≤
ρL

∗
f · σL∗

g

ΓP0[f ] · σL
∗

f

,

and
(b) if T (r, P0[f ]) = o {L (M (r, g))} then

lim inf
r→∞

log T (r, f ◦ g)
T (r, P0[f ]) + L (M (r, g))

≤ ρL
∗

f .

Proof. In view of condition (ii) we obtain from (2)
for all sufficiently large values of r that

log T (r, f ◦ g) ≤ o (1)+(
ρL

∗
f + ε

)(
σL

∗
g + ε

){
reL(r)

}ρL
∗

f

+
(
ρL

∗
f + ε

)
L (M (r, g)) . (5)

Again from the definition of L∗-type and in view of
Lemma 12 and Lemma 14 we get for a sequence of
values of r tending to infinity that

T (r, P0[f ]) ≥
(
σL

∗

L(f) − ε
){

reL(r)
}ρL

∗
P0[f ]

i.e., T (r, P0[f ]) ≥
{
ΓP0[f ].σ

L∗
f − ε

}{
reL(r)

}ρL
∗

f

i.e.,
{
reL(r)

}ρL
∗

f ≤ T (r, P0[f ])(
ΓP0[f ].σ

L∗
f − ε

) . (6)

Now from (5) and (6) it follows for a sequence of
values of r tending to infinity that

log T (r, f ◦ g) ≤ o (1) +

(
ρL

∗
f + ε

)(
σL

∗
g + ε

) T (r, P0[f ])(
ΓP0[f ].σ

L∗
f − ε

)
+
(
ρL

∗
f + ε

)
L (M (r, g))

ie.,
log T (r, f ◦ g)

T (r, P0[f ]) + L (M (r, g))

≤ o (1)

T (r, P0[f ]) + L (M (r, g))
+

(
ρL

∗
f +ε

)(
σL∗
g +ε

)
(ΓP0[f ]

.σL∗
f −ε)

1 + L(M(r,g))
T (r,P0[f ])

+

(
ρL

∗
f + ε

)
1 + T (r,P0[f ])

L(M(r,g))

. (7)

If L (M (r, g)) = o {T (r, L(f))} then from (7) we
get that

lim inf
r→∞

log T (r, f ◦ g)
T (r, P0[f ]) + L (M (r, g))

≤

(
ρL

∗
f + ε

) (
σL

∗
g + ε

)
ΓP0[f ].

(
σL

∗
f − ε

) .
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Since ε (> 0) is arbitrary it follows from above that

lim inf
r→∞

log T (r, f ◦ g)
T (r, P0[f ]) + L (M (r, g))

≤
ρL

∗
f · σL∗

g

ΓP0[f ]. · σL
∗

f

.

Thus the first part of Theorem 21 follows.
Again if T (r, L(f)) = o {L (M (r, g))} then

from (7) it follows that

lim inf
r→∞

log T (r, f ◦ g)
T (r, P0[f ]) + L (M (r, g))

≤
(
ρL

∗
f + ε

)
.

As ε (> 0) is arbitrary we obtain from above that

lim inf
r→∞

log T (r, f ◦ g)
T (r, P0[f ]) + L (M (r, g))

≤ ρL
∗

f .

Thus the second part of Theorem 21 follows. ⊓⊔
Now in the line of Theorem 21 one may state the

following two theorems without proof :

Theorem 22 Let f be a meromorphic function with
finite order or non zero lower order and g be entire
such that

(i) 0 < ρL
∗

f <∞,

(ii) ρL
∗

f = ρL
∗

g ,

(iii) σL
∗

g <∞,

(iv) 0 < σL
∗

f <∞ and
(v) Θ (∞; f) =

∑
a ̸=∞

δp (a; f) = 1 or δ (∞; f) =∑
a ̸=∞

δ (a; f) = 1.

Then
(a) if L (M (r, g)) = o

{
rαeαL(r)

}
as r → ∞

and for some positive α < ρL
∗

f then

lim inf
r→∞

log T (r, f ◦ g)
T (r, P0[f ]) + L (M (r, g))

≤
ρL

∗
f · σL∗

g

γP0[f ] · σL
∗

f

,

and
(b) if T (r, P0[f ]) = o {L (M (r, g))} then

lim inf
r→∞

log T (r, f ◦ g)
T (r, P0[f ]) + L (M (r, g))

≤ ρL
∗

f .

Theorem 23 Let f be a transcendental meromorphic
function with finite order or non zero lower order and
g be entire such that

(i) 0 < ρL
∗

f <∞,

(ii) ρL
∗

f = ρL
∗

g ,

(iii) σL
∗

g <∞,

(iv) 0 < σL
∗

f <∞ and

(v)
∑

a∈C∪{∞}
δ1(a; f) = 4.

Then
(a) if L (M (r, g)) = o

{
rαeαL(r)

}
as r → ∞

and for some positive α < ρL
∗

f then

lim inf
r→∞

log T (r, f ◦ g)
T (r,M [f ]) + L (M (r, g))

≤
ρL

∗
f · σL∗

g

ΓM − (ΓM − γM )Θ(∞; f) · σL∗
f

,

and
(b) if T (r,M [f ]) = o {L (M (r, g))} then

lim inf
r→∞

log T (r, f ◦ g)
T (r,M [f ]) + L (M (r, g))

≤ ρL
∗

f .

Theorem 24 Let f be an entire function of finite or-
der or of non zero lower order and g be an entire func-
tion with 0 < λL

∗
f ≤ ρL

∗
f <∞, 0 < λL

∗
g ≤ ρL

∗
g <∞

and Θ(∞; f) =
∑

a ̸=∞
δp (a; f) = 1 or δ (∞; f) =∑

a ̸=∞
δ (a; f) = 1. Then

lim sup
r→∞

log[2] T (r, f ◦ g)
log T (r, P0[f ]) + L

(
1
8M

(
r
4 , g
)) ≥

ρL
∗

g

ρL
∗

f

.

Proof. In view of Lemma 10, we have for all suffi-
ciently large values of r,

T (r, f ◦ g) ≥
1

3
logM

{
1

8
M
(r
4
, g
)
+ o (1) , f

}
i.e., log T (r, f ◦ g) ≥ o (1) +

log[2]M

{
1

8
M
(r
4
, g
)
+ o (1) , f

}
. (8)

i.e., log T (r, f ◦ g) ≥ o (1)

+
(
λL

∗
f − ε

)[
log

{
1

8
M
(r
4
, g
)
+ o (1)

}
+L

(
1

8
M
(r
4
, g
))]

i.e., log T (r, f ◦ g) ≥ o (1) +
(
λL

∗
f − ε

)
.

[
log

{
1

8
M
(r
4
, g
)(

1 +
o (1)

1
8M

(
r
4 , g
))}

+L

(
1

8
M
(r
4
, g
))]
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i.e., log T (r, f ◦ g) ≥
(
λL

∗
f − ε

)
logM

(r
4
, g
)
.

logM
(
r
4 , g
)
+log

(
1 + o(1)

1
8
M( r

4
,g)

)
+L

(
1
8M

(
r
4 , g
))

logM
(
r
4 , g
)


i.e., log[2] T (r, f ◦ g) ≥

log[2]M
(r
4
, g
)
+

(
λL

∗
g − ε

ρL
∗

f + ε

)
L

(
1

8
M
(r
4
, g
))

− log

[
exp

{(
λL

∗
g − ε

ρL
∗

f + ε

)
L

(
1

8
M
(r
4
, g
))}]

+

log


(
λL

∗
f −ε

) [
logM

(
r
4 , g
)
+L

(
1
8M

(
r
4 , g
))]

+o (1)

logM
(
r
4 , g
)


i.e., log[2] T (r, f ◦ g) ≥

log[2]M
(r
4
, g
)
+

(
λL

∗
g − ε

ρL
∗

f + ε

)
L

(
1

8
M
(r
4
, g
))

+

log


(
λL

∗
f −ε

) [
logM

(
r
4 , g
)
+L
(
1
8M

(
r
4 , g
))]

+o (1)

exp

{(
λL∗
g −ε

ρL
∗

f +ε

)
L
(
1
8M

(
r
4 , g
))}

logM
(
r
4 , g
)


i.e.,

log[2] T (r, f ◦ g) ≥ log[2]M
(r
4
, g
)

+

(
λL

∗
g − ε

ρL
∗

f + ε

)
L

(
1

8
M
(r
4
, g
))

. (9)

Now from (9) it follows for a sequence of values of r
tending to infinity that

log[2] T (r, f ◦ g) ≥
(
ρL

∗
g − ε

)
log
{r
4
eL(

r
4)
}

+

(
ρL

∗
g − ε

ρL
∗

f + ε

)
L

(
1

8
M
(r
4
, g
))

. (10)

In view of Lemma 15, we get for all sufficiently large
values of r that

log T (r, P0[f ]) ≤
(
ρL

∗

P0[f ]
+ ε
)
log
{
reL(r)

}
i.e., log T (r, P0[f ]) ≤

(
ρL

∗
f + ε

)
log
{
reL(r)

}
i.e., log T (r, P0[f ])

≤
(
ρL

∗
f + ε

)
log
{r
4
eL(

r
4)
}
+ log 4. (11)

Hence from (10) and (11) it follows for all sufficiently
large values of r that

i.e., log[2] T (r, f ◦ g) ≥(
ρL

∗
g − ε

ρL
∗

f + ε

)
(log T (r, P0[f ])− log 4)

+

(
ρL

∗
g − ε

ρL
∗

f + ε

)
L

(
1

8
M
(r
4
, g
))

i.e., log[2] T (r, f ◦ g) ≥(
ρL

∗
g − ε

ρL
∗

f + ε

)[
log T (r, P0[f ]) + L

(
1

8
M
(r
4
, g
))]

−

(
ρL

∗
g − ε

ρL
∗

f + ε

)
log 4

i.e.,
log[2] T (r, f ◦ g)

log T (r, P0[f ]) + L
(
1
8M

(
r
4 , g
)) ≥

(
ρL

∗
g − ε

ρL
∗

f + ε

)

−

(
ρL

∗
g −ε

ρL
∗

f +ε

)
log 4

log T (r, P0[f ]) + L
(
1
8M

(
r
4 , g
)) . (12)

Since ε (> 0) is arbitrary, it follows from (12) that

lim sup
r→∞

log[2] T (r, f ◦ g)
log T (r, P0[f ]) + L

(
1
8M

(
r
4 , g
)) ≥

ρL
∗

g

ρL
∗

f

.

This proves the theorem. ⊓⊔
In the line of Theorem 24 the following theorem

may be proved :

Theorem 25 Let f be an entire function of finite or-
der or of non zero lower order and g be an entire func-
tion with 0 < λL

∗
f ≤ ρL

∗
f <∞, 0 < λL

∗
g ≤ ρL

∗
g <∞

and Θ(∞; f) =
∑

a ̸=∞
δp (a; f) = 1 or δ (∞; f) =∑

a ̸=∞
δ (a; f) = 1. Then

lim inf
r→∞

log[2] T (r, f ◦ g)
log T (r, P0[f ]) + L

(
1
8M

(
r
4 , g
)) ≥

λL
∗

g

ρL
∗

f

.

Remark 26 By Lemma 14, the conclusion of Theo-
rem 24 and Theorem 25 can also be drawn under the
hypothesis

∑
a ̸=∞

Θ(a; f) = 2 instead of

Θ(∞; f) =
∑
a ̸=∞

δp (a; f) = 1

or δ (∞; f) =
∑

a ̸=∞
δ (a; f) = 1.
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Theorem 27 Let f be a transcendental entire func-
tion of finite order or of non zero lower order and g
be an entire function with 0 < λL

∗
f ≤ ρL

∗
f < ∞,

0 < λL
∗

g ≤ ρL
∗

g < ∞ and
∑

a∈C∪{∞}
δ1(a; f) = 4.

Then

lim sup
r→∞

log[2] T (r, f ◦ g)
log T (r, P0[f ]) + L

(
1
8M

(
r
4 , g
)) ≥

ρL
∗

g

ρL
∗

f

.

Theorem 28 Let f be a transcendental entire func-
tion of finite order or of non zero lower order and g
be an entire function with 0 < λL

∗
f ≤ ρL

∗
f < ∞,

0 < λL
∗

g ≤ ρL
∗

g < ∞ and
∑

a∈C∪{∞}
δ1(a; f) = 4.

Then

lim inf
r→∞

log[2] T (r, f ◦ g)
log T (r,M [f ]) + L

(
1
8M

(
r
4 , g
)) ≥

λL
∗

g

ρL
∗

f

.

The proof of the above two theorems can be es-
tablished in the line of Theorem 24 and Theorem 25
respectively and with the help of Lemma 17 and there-
fore is omitted.

Theorem 29 Let f be meromorphic and g be en-
tire of finite order or of non zero lower order with
ρL

∗
f < ∞, 0 < λL

∗
g ≤ ρL

∗
g < ∞ and δ (∞; g) =∑

a ̸=∞
δ (a; g) = 1. Then

(a) if L (M (r, g)) = o {log T (r, P0 [g])} then

lim sup
r→∞

log[2] T (r, f ◦ g)
log T (r, P0 [g]) + L (M (r, g))

≤
ρL

∗
f

λL∗
g

,

and
(b) if T (r, P0 [g]) = o {L (M (r, g))} then

lim
r→∞

log[2] T (r, f ◦ g)
log T (r, P0 [g]) + L (M (r, g))

= 0 .

Proof. For all sufficiently large values of r we obtain
in view of T (r, g) ≤ log+M (r, g) and by Lemma 9
that

T (r, f ◦ g) ≤ {1 + o (1)}T (M (r, g) , f)

i.e., log T (r, f ◦ g) ≤ log {1 + o (1)}+

log T (M (r, g) , f)

i.e., log T (r, f ◦ g) ≤ o (1) +

log T (M (r, g) , f)

i.e., log T (r, f ◦ g) ≤ o (1) +(
ρL

∗
f + ε

)
{logM (r, g) + L (M (r, g))}

i.e., log T (r, f ◦ g) ≤ o (1) +(
ρL

∗
f + ε

)
logM (r, g)

{
1 +

L (M (r, g))

logM (r, g)

}

i.e., log[2] T (r, f ◦ g)

≤ o (1) + log
(
ρL

∗
f + ε

)
+ log[2]M (r, g)

+ log

{
1 +

L (M (r, g))

logM (r, g)

}

i.e., log[2] T (r, f ◦ g) ≤ o (1)

+ log
(
ρL

∗
f + ε

)
+
(
ρL

∗
g + ε

)
log
{
reL(r)

}
+ log

{
1 +

L (M (r, g))

logM (r, g)

}

i.e., log[2] T (r, f ◦ g)

≤ o (1) +
(
ρL

∗
g + ε

)
{log r + L(r)}

+
L (M (r, g))

logM (r, g)
. (13)

Again in view of Lemma 15 we get from the def-
inition of L∗-lower order for all sufficiently large val-
ues of r that

log T (r, P0 [g]) ≥
(
λL

∗

P0[g]
− ε
)
log
[
reL(r)

]
i.e., log T (r, P0 [g]) ≥

(
λL

∗
g − ε

)
log
[
reL(r)

]
i.e., log T (r, P0 [g]) ≥

(
λL

∗
g − ε

)
[log r + L(r)]

i.e., log r + L(r) ≤ log T (r, P0 [g])(
λL∗
g − ε

) . (14)

Hence from (13) and (14) it follows for all sufficiently
large values of r that

log[2] T (r, f ◦ g)

≤ o (1) +

(
ρL

∗
g + ε

λL∗
g − ε

)
· log T (r, P0 [g])

+
L (M (r, g))

logM (r, g)

WSEAS TRANSACTIONS on MATHEMATICS Sanjib Kumar Datta, Tanmay Biswas, Golok Kumar Mondal

E-ISSN: 2224-2880 710 Issue 6, Volume 12, June 2013



i.e,
log[2] T (r, f ◦ g)

log T (r, P0 [g]) + L (M (r, g))

≤ o (1)+

(
ρL

∗
f + ε

λL∗
g − ε

)
· log T (r, P0 [g])

log T (r, P0 [g]) + L (M (r, g))

+
L (M (r, g))

[log T (r, P0 [g]) + L (M (r, g))] logM (r, g)

i.e,
log[2] T (r, f ◦ g)

log T (r, P0 [g]) + L (M (r, g))
≤ o (1)+(

ρL
∗

f +ε

λL∗
g −ε

)
1 + L(M(r,g))

log T (r,P0[g])

+
1[

1 + log T (r,P0[g])
L(M(r,g))

]
logM (r, g)

(15)

Since L (M (r, g)) = o {log T (r, P0 [g])} as r → ∞
and ε (> 0) is arbitrary, we obtain from (15) that

lim sup
r→∞

log[2] T (r, f ◦ g)
log T (r, P0 [g]) + L (M (r, g))

≤
ρL

∗
f

λL∗
g

.

(16)
Again if log T (r, g) = o {L (M (r, g))} then from
(15) we get that

lim
r→∞

log[2] T (r, f ◦ g)
log T (r, P0 [g]) + L (M (r, g))

= 0 . (17)

Thus from (16) and (17) the theorem is established.
⊓⊔

Corollary 30 Let f be meromorphic and g be en-
tire of finite order or of non zero lower order with
ρL

∗
f < ∞, 0 < λL

∗
g ≤ ρL

∗
g < ∞ and δ (∞; g) =∑

a ̸=∞
δ (a; g) = 1. Then

(a) if L (M (r, g)) = o {log T (r, P0 [g])} then

lim inf
r→∞

log[2] T (r, f ◦ g)
T (r, P0 [g]) + L (M (r, g))

≤ 1

and
(b) if T (r, P0 [g]) = o {L (M (r, g))} then

lim inf
r→∞

log[2] T (r, f ◦ g)
T (r, P0 [g]) + L (M (r, g))

= 0 .

We omit the proof of Corollary 30 because it can
be carried out in the line of Theorem 29.

Remark 31 The equality sign in Theorem 29 and
Corollary 30 cannot be removed as we see in the fol-
lowing example.

Example 32 Let f = g = exp z and L(r) =
1
p exp

(
1
r

)
where p is any positive real number.

Then

ρL
∗

f = λL
∗

g = ρL
∗

g = 1

and δ (∞; g) =
∑
a ̸=∞

δ (a; g) = 1.

Also let s = 1, A1 = 1 and

ni1 =

{
1, for i = 1
0, for i ̸= 1.

Then
P0 [g] = exp z.

Now

T (r, f ◦ g) ∼ exp r

(2π3r)
1
2

(r → ∞) ,

T (r, g) =
r

π
and M (r, g) = exp r .

So

L (M (r, g)) = L (exp r) =
1

p
exp

(
1

exp r

)
.

Hence

lim inf
r→∞

log[2] T (r, f ◦ g)
log T (r, P0 [g]) + L (M (r, g))

= lim sup
r→∞

log[2] T (r, f ◦ g)
log T (r, P0 [g]) + L (M (r, g))

= lim sup
r→∞

log
[
r − 1

2 log r +O (1)
]

log r +O (1) + 1
p exp

(
1

exp r

)
= 1 .

Remark 33 The conclusion of Theorem 29 and
Corollary 30 can also be drawn under the hypothe-
sis Θ(∞; g) =

∑
a ̸=∞

δp (a; g) = 1 or
∑

a ̸=∞
Θ(a; g) = 2

instead of δ (∞; g) =
∑

a ̸=∞
δ (a; g) = 1.

In the line of Theorem 29 and with the help of
Lemma 17 we may state the following theorem with-
out proof :

Theorem 34 Let f be meromorphic and g be tran-
scendental entire of finite order or of non zer lower
order with ρL

∗
f < ∞, 0 < λL

∗
g ≤ ρL

∗
g < ∞ and∑

a∈C∪{∞}
δ1(a; g) = 4. Then
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(a) if L (M (r, g)) = o {log T (r,M [g])} then

lim sup
r→∞

log[2] T (r, f ◦ g)
log T (r,M [g]) + L (M (r, g))

≤
ρL

∗
f

λL∗
g

and
(b) if T (r,M [g]) = o {L (M (r, g))} then

lim
r→∞

log[2] T (r, f ◦ g)
log T (r,M [g]) + L (M (r, g))

= 0 .

The proof of the following corollary may also be
deduced in view of Theorem 34 :

Corollary 35 Let f be meromorphic and g be tran-
scendental entire of finite order or of non zero lower
order with ρL

∗
f < ∞, 0 < λL

∗
g ≤ ρL

∗
g < ∞ and∑

a∈C∪{∞}
δ1(a; g) = 4. Then

(a) if L (M (r, g)) = o {log T (r,M [g])} then

lim inf
r→∞

log[2] T (r, f ◦ g)
T (r,M [g]) + L (M (r, g))

≤ 1

and
(b) if T (r,M [g]) = o {L (M (r, g))} then

lim inf
r→∞

log[2] T (r, f ◦ g)
T (r,M [g]) + L (M (r, g))

= 0 .

Theorem 36 Let f be meromorphic with λL
∗

f < ∞
and g be entire with finite order or non zero finite
lower order and

∑
a ̸=∞

Θ(a; g) = 2. Also let there

exists entire functions ai (i = 1, 2, 3, · · · , n;n ≤ ∞)

such that T (r, ai) = o {T (r, g)} and
n∑

i=1
δ (ai, g) =

1. If L (M (r, g)) = o
{
rαeαL(r)

}
as r → ∞ and for

some α with 0 < α < λL
∗

g then

lim inf
r→∞

log T (r, f ◦ g)
T (r, P0 [g])

≤
πλL

∗
f

ΓP0[g]
,

otherwise

lim inf
r→∞

log T (r, f ◦ g)
T (r, P0 [g]) · L (M (r, g))

= 0 .

Proof. In view of the inequality T (r, g) ≤
log+M(r, g) and by Lemma 9 we get for a sequence
of values of r tending to infinity that

T (r, f ◦ g) ≤ {1 + o (1)}T (M (r, g) , f)

i.e.,

log T (r, f ◦ g)
≤ log {1 + o (1)}+ log T (M (r, g) , f)

i.e.,

log T (r, f ◦ g)

≤
(
λL

∗
f − ε

)
(logM (r, g) + L (M (r, g))) +O(1)

i.e.,

log T (r, f ◦ g)
T (r, P0 [g])

≤(
λL

∗
f − ε

)
(logM (r, g) + L (M (r, g))) +O(1)

T (r, P0 [g])

i.e.,

log T (r, f ◦ g)
T (r, P0 [g])

≤

(
λL

∗
f − ε

)
· logM (r, g) + L (M (r, g))

T (r, P0 [g])

+O(1). (18)

Case I. Let L (M (r, g)) = o
{
rαeαL(r)

}
as r → ∞

and for some α with 0 < α < λL
∗

g .
Since α < λL

∗
g , we can choose ε (> 0) in such a way

that
α < λL

∗
g − ε . (19)

As L (M (r, g)) = o
{
rαeαL(r)

}
as r → ∞ we get in

view of (19) that

lim
r→∞

L (M (r, g))[
reL(r)

]λL∗
g −ε

= 0 . (20)

Again in view of Lemma 13 we obtain for all suffi-
ciently large values of r,

log T (r, P0 [g]) ≥
(
λL

∗

P0[g]
− ε
)
log
{
reL(r)

}
i.e., log T (r, P0 [g]) ≥

(
λL

∗
g − ε

)
log
{
reL(r)

}
i.e., T (r, P0 [g]) ≥

[
reL(r)

]λL∗
g −ε

. (21)

Now from (18) and (21) we obtain for a sequence of
values of r tending to infinity that

log T (r, f ◦ g)
T (r, P0 [g])

≤
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(
λL

∗
f − ε

) logM (r, g)

T (r, P0 [g])
+

L (M (r, g))[
reL(r)

]λL∗
g −ε

+O(1)

i.e.,
log T (r, f ◦ g)
T (r, P0 [g])

≤
(
λL

∗
f − ε

)
× logM (r, g)

T (r, g)
· T (r, g)

T (r, P0 [g])
+

L (M (r, g))[
reL(r)

]λL∗
g −ε


+O(1). (22)

Now combining (20) and (22) and in view of Lemma
11 and Lemma 12, it follows that

lim inf
r→∞

log T (r, f ◦ g)
T (r, P0 [g])

≤
πλL

∗
f

ΓP0[g]
. (23)

Case II. If L (M (r, g)) ̸= o
{
rαeαL(r)

}
as r → ∞

and for some α with 0 < α < λL
∗

g , then from (18)
we get for a sequence of values of r tending to infinity
that

log T (r, f ◦ g)
T (r, P0 [g])L (M (r, g))

≤(
λL

∗
f − ε

)
· logM (r, g)

T (r, P0 [g])L (M (r, g))

+
1 +O(1)

T (r, P0 [g])
.

i.e., lim inf
r→∞

log T (r, f ◦ g)
T (r, P0 [g])L (M (r, g))

= 0 .

Thus combining Case I and Case II the theorem fol-
lows. ⊓⊔

Remark 37 In view of Lemma 15 one can easily ver-
ify that the conclusion of Theorem 35 can also be de-
duced if we replace

∑
a ̸=∞

Θ(a; g) = 2 by Θ(∞; g) =∑
a ̸=∞

δp (a; g) = 1 or δ (∞; g) =
∑

a ̸=∞
δ (a; g) = 1.

In the line of Theorem 36 the following theorem
can be proved :

Theorem 38 Let f be meromorphic with ρL
∗

f < ∞
and g be entire with finite order or non zero finite
lower order and Θ(∞; g) =

∑
a ̸=∞

δp (a; g) = 1

or δ (∞; g) =
∑

a ̸=∞
δ (a; g) = 1. Also let there exists

entire functions ai ( i = 1, 2, 3, · · · , n; n ≤ ∞ ) such

that T (r, ai) = o {T (r, g)} and
n∑

i=1
δ (ai, g) = 1.

If L (M (r, g)) = o
{
rαeαL(r)

}
as r → ∞ and

for some α with 0 < α < λL
∗

g then

lim sup
r→∞

log T (r, f ◦ g)
T (r, P0 [g])

≤
πρL

∗
f

γP0[g]
,

otherwise

lim sup
r→∞

log T (r, f ◦ g)
T (r, P0 [g])L (M (r, g))

= 0 .

Remark 39 In view of Lemma 14 one can easily ver-
ify that the conclusion of Theorem 38 can also be de-
duced if we replace Θ(∞; g) =

∑
a ̸=∞

δp (a; g) = 1or

δ (∞; g) =
∑

a ̸=∞
δ (a; g) = 1 by

∑
a ̸=∞

Θ(a; g) = 2.

In the line of Theorem 36 and Theorem 38 and
with the help of Lemma 17 we may state the following
two theorems without proof :

Theorem 40 Let f be meromorphic with
λL

∗
f < ∞ and g be transcendental entire with

finite order or non zero finite lower order and∑
a∈C∪{∞}

δ1(a; g) = 4. Also let there exists entire

functions ai (i = 1, 2, 3, · · · , n;n ≤ ∞) such that

T (r, ai) = o {T (r, g)} and
n∑

i=1
δ (ai, g) = 1.

If L (M (r, g)) = o
{
rαeαL(r)

}
as r → ∞ and

for some α with 0 < α < λL
∗

g then

lim inf
r→∞

log T (r, f ◦ g)
T (r,M [g])

≤
πλL

∗
f

ΓM − (ΓM − γM )Θ(∞; g)
,

otherwise

lim inf
r→∞

log T (r, f ◦ g)
T (r,M [g]) · L (M (r, g))

= 0 .

Theorem 41 Let f be meromorphic with
ρL

∗
f < ∞ and g be transcendental entire with

finite order or non zero finite lower order and∑
a∈C∪{∞}

δ1(a; g) = 4. Also let there exist entire

functions ai (i = 1, 2, 3, · · · , n;n ≤ ∞) such that

T (r, ai) = o {T (r, g)} and
n∑

i=1
δ (ai, g) = 1.

If L (M (r, g)) = o
{
rαeαL(r)

}
as r → ∞ and

for some α with 0 < α < λL
∗

g then

lim sup
r→∞

log T (r, f ◦ g)
T (r, P0 [g])

≤
πρL

∗
f

ΓM − (ΓM − γM )Θ(∞; g)
,

otherwise

lim sup
r→∞

log T (r, f ◦ g)
T (r, P0 [g])L (M (r, g))

= 0 .
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Theorem 42 Let f be a meromorphic function and
g be entire of finite order or of non zero lower or-
der such that ρL

∗
g < ∞, λL

∗
f◦g = ∞ and δ (∞; g) =∑

a ̸=∞
δ (a; g) = 1. Then

lim
r→∞

log T (r, f ◦ g)
log T (r, P0 [g])

= ∞.

Proof. Let us suppose that the conclusion of the theo-
rem does not hold.Then we can find a constant β > 0
such that for a sequence of values of r tending to in-
finity

log T (r, f ◦ g) ≤ β log T (r, P0 [g]). (24)

Again from the definition of ρL
∗

P0[f ]
it follows that for

all sufficiently large values of r and in view of Lemma
6,

log T (r, P0 [g]) ≤
(
ρL

∗

P0[g]
+ ε
)
log
{
reL(r)

}
i.e., log T (r, P0 [g]) ≤(

ρL
∗

g + ε
)
log
{
reL(r)

}
. (25)

Thus from (24) and (25) we have for a sequence of
values of r tending to infinity that

log T (r, f ◦ g) ≤ β
(
ρL

∗
g + ε

)
log
{
reL(r)

}
i.e.,

log T (r, f ◦ g)
log
{
reL(r)

} ≤
β
(
ρL

∗
g + ε

)
log
{
reL(r)

}
log
{
reL(r)

}
i.e., lim inf

r→∞

log T (r, f ◦ g)
log
{
reL(r)

} = λL
∗

f◦g <∞.

This is a contradiction.
This proves the theorem. ⊓⊔

Remark 43 Theorem 42 is also valid with “limit su-
perior” instead of “limit” if λL

∗
f◦g = ∞ is replaced

by ρL
∗

f◦g = ∞ and the other conditions remaining the
same.

Corollary 44 Under the assumptions of Theorem 42
or Remark 43,

lim sup
r→∞

T (r, f ◦ g)
T (r, P0 [g])

= ∞.

Proof. By Theorem 42 or Remark 43 we obtain for
all sufficiently large values of r and for K > 1,

log T (r, f ◦ g) > K log T (r, P0 [g])

i.e., T (r, f ◦ g) > {T (r, P0 [g])}K ,

from which the corollary follows. ⊓⊔

Remark 45 The condition λL
∗

f◦g = ∞ is necessary in
Theorem 42 and Corollary 44 which is evident from
the following example :

Example 46 Let f = z, g = exp z and L(r) =
1
p exp

(
1
r

)
where p is any positive real number.

Also let s = 1, A1 = 1 and

ni1 =

{
1, for i = 1
0, for i ̸= 1.

Then
P0 [g] = exp z.

Also

δ (∞; g) =
∑
a ̸=∞

δ (a; g) = 1,

ρL
∗

g = 1 <∞ and λL
∗

f◦g = 1 <∞.

Now
T (r, f ◦ g) = T (r, exp z) =

r

π

and
T (r, P0 [g]) = T (r, exp z) =

r

π
.

Therefore

lim
r→∞

log T (r, f ◦ g)
log T (r, P0 [g])

= lim
r→∞

log r +O(1)

log r +O(1)

= 1

and

lim
r→∞

T (r, f ◦ g)
T (r, P0 [g])

= lim
r→∞

( rπ )

( rπ )

= 1.

Remark 47 Considering

f = z, g = exp z, A = 1, L(r) =
1

p
exp

(
1

r

)
where p is any positive real number s = 1, A1 = 1
and

ni1 =

{
1, for i = 1
0, for i ̸= 1.

one may also verify that the condition ρL
∗

f◦g = ∞ in
Remark 43 and Corollary 44 is essential.
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Remark 48 The conclusion of Theorem 42, Re-
mark 43 and Corollary 44 can also be drawn un-
der the hypothesis Θ(∞; g) =

∑
a ̸=∞

δp (a; g) =

1 or
∑

a ̸=∞
Θ(a; g) = 2 instead of δ (∞; g) =∑

a ̸=∞
δ (a; g) = 1.

In the line of Theorem 42 the following theorem
may be deduced:

Theorem 49 Let f be meromorphic and g be tran-
scendental entire of finite order or non zero lower
order such that ρL

∗
g < ∞, λL

∗
f◦g = ∞ and∑

a∈C∪{∞}
δ1(a; g) = 4. Then

lim
r→∞

log T (r, f ◦ g)
log T (r,M [g])

= ∞.

Remark 50 Theorem 49 is also valid with “limit su-
perior” instead of “limit” if λL

∗
f◦g = ∞ is replaced

by ρL
∗

f◦g = ∞ and the other conditions remaining the
same.

Corollary 51 Under the assumptions of Theorem 49
or Remark 50,

lim sup
r→∞

T (r, f ◦ g)
T (r,M [g])

= ∞.

The proof is omitted because it can be carried out
in the line of Corollary 44.
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